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LEARNING CURVE AND RATE ADJUSTMENT MODELS:

COMPARATIVE PREDICTION ACCURACY UNDER VARYING CONDITIONS

ABSTRACT

Learning curve models have gained widespread acceptance as a

technique for analyzing and forecasting the cost of items produced

from a repetitive process. Considerable research has investigated

augmenting the traditional learning curve model with the addition

of a production rate variable, creating a rate adjustment model.

This study compares the predictive accuracy of the learning curve

and rate adjustment models. A simulation methodology is used to

vary conditions along seven dimensions. Forecast errors are

analyzed and compared under the various simulated conditions using

ANOVA. Overall results indicate that neither model dominates; each

is more accurate under some conditions. Conditions under which

each model tends to result in lower forecast errors are identified

and discussed.
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LEARNING CURVE AND RATE ADJUSTMENT MODELS:

COMPARATIVE PREDICTION ACCURACY UNDER VARYING CONDITIONS

INTRODUCTION

Learning curves have gained widespread acceptance as a tool for

planning, analyzing, explaining, and predicting the behavior of the

unit cost of items produced from a repetitive production process.

(See Yelle, 1979, for a review.) Cost estimation techniques for

planning the cost of acquiring weapon systems by the Department of

Defense, for example, typically consider the role of learning in

the estimation process. The premise of learning curve analysis is

that cumulative quantity is the primary driver of unit cost. Unit

cost is expected to decline as cumulative quantity increases.

There is general acknowledgement that cumulative quantity is

not the only factor that influences anit cost and that the simple

learning curve is not a fully adequate description of cost

behavior. Hence prior research has attempted to augment learning

curve models by including additional variables (e.g., Moses, 1990).

Most attention has been focused on the addition of a production

rate term.' The resulting augmented model is usually referred to

as a rate adjustment model.

Conceptually, production rate should be expected to affect unit

cost because of the impact of economies of scale. Higher

'One review of the literature pertaining to learning curves
(Cheney, 1977) found that 36% of the articles reviewed attempted to
augment the learning curve model in some manner by the inclusion of
production related variables.
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production rates may lead to several related effects: greater

specialization of labor, quantity discounts and efficiencies

associated with raw materials purchases, and greater use of

facilities permitting fixed overhead costs to be spread over a

larger output quantity. Together, these effects work to increase

efficiency and reduce production cost (Bemis, 1981; Boger and Liao,

1990; Large, et. al., 1974; Linder and Wilbourn, 1973). However,

higher production rate does not guarantee lower cost. When

production rate exceeds capacity, such factors as over-time pay,

lack of skilled labor, or the need to bring more facilities online

may lead to inefficiencies and increased unit cost. In short,

production rate may be associated with both economies and

diseconomies of scale.

PRIOR RESEARCH

Numerous studies, using data on actual production cost

elements, have been conducted to empirically examinf. the impact of

production rate on unit cost. The broad objective of the research

has been to document rate/cost relationships and determine if

consideration of production rate leads to improvements in cost

explanation or prediction. Results have been inconsistent and

general findings inconclusive. Various studies (e.g., Alchian,

1963; Cochran, 1960; Hirsh, 1952; Large, Campbell and Cates, 1976)

found little or no significance for rate variables. Other studies

did document significant rate/cost relationships (e.g., Bemis,

1981; Cox and Gansler, 1981). Some research found significant

results only for particular individual cost elements, such as labor
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(Smith, 1976), tooling (Levenson, et. al., 1971) or overhead

(Large, Hoffmayer, and Kontrovich, 1974). But rate/cost

relationships for these same cost elements were not consistently

evident in other studies. When significant, estimates of the

rate/cost slope varied greatly and the direction of the

relationship was sometimes negative and sometimes positive (e.g.,

Moses, 1990). In reviewing the existing research on production

rate, Smith (1980) concluded that a rate/cost relationship may

exist but that the existence, strength and nature of the

relationship varies with the item produced and the cost element

examined.

Several explanations for these varying, inconclusive empirical

results can be offered:

(a) Varying results are to be expected because rate changes can

lead to both economies and diseconomies of scale.

(b) Production rate effects are difficult to isolate

empirically because of colinearity with cumulative quantity

(Gulledge and Womer, 1986).

(c) Researchers have usually used inappropriate measures of

production rate leading to misspecified models (Boger and Liao,

1990).

(d) The impact of a production rate change is dominated by

other uncertainties (Large, Hoffmayer, and Kontrovich, 1974),

particularly by cumulative quantity (Asher, 1956). Alchian (1963),

for example, was unable to find results for rate adjustment models

that improved on the traditional learning curve without a rate

3



parameter.

OBJECTIVE OF THE STUDY

The prior research suggests that consideration of production

rate sometimes improves cost explanation, but not always. The

prior research suggests that a traditional learning curve model

sometimes is preferable to a rate adjustment model, but not always.

The -prior research provides little guidance concerning the

circumstances under which explicit incorporation of production rate

into a learning curve model is likely to lead to improved

explanation or prediction. This issue is important in a namber of

cost analysis and cost estimation situations. DorsAtt (1990), for

example, describes the current situation facing military cost

estimators who, with the military facing budget reductions and

program stretchouts, are required to rapidly develop weapon system

acquisition cost estimates under many different quantity profiles.

One choice the cost analyst faces is between using a rate

adjustment model or a traditional learning model to develop estimates. 2

The objective of this paper is to address the following broad

issue: Under what circumstances is it beneficial to explicitly

2Two other techniques for making cost estimates when
production rate changes are also mentioned by Dorsett: curve
rotation, which involves an ad hoc upward or downward revision to
the slope of the learning curve, and the use of repricing models
(e.g., Balut, 1981; Balut, Gulledge, and Womer, 1989) which adjust
learning curve estimates to reflect a greater or lesser application
of overhead cost. Dorsett criticized curve rotation for being
subjective and leading to a compounding of error when the
prediction horizon is not short. He criticized repricing models
because they must be plant-specific to be effective.
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consider production rate in cost analysis? That broad issue is

addressed by focusing more narrowly on the following research

question: Under what circumstances do rate adjustment models

outperform traditional learning curve models? Performance here

means the ability to provide accurate predictions of future cost. 3

RESEARCH APPROACH

Operationally the research question implies a comparison of the

predictive accuracy of two competing cost estimation models. The

two competing models were as follows:

The traditional learning curve model, which predicts unit cost

as a function of cumulative quantity4 :

CL = aQb (i)

where

CL Unit cost of item at quantity Q (i.e., with learning
considered).

Q Cumulative quantity produced.
a Theoretical first unit cost.
b Learning curve exponent (which can be converted to a

learning slope by slope = 2 b).

3For many of the studies cited in the section on prior
research, performance was assessed in terms of a model's ability to
ex post, statistically account for the variance in an actual cost
series. The problem of "overfitting" a model to data always exists
when regression techniques are used to ax post explain a cost
series. In fact, if higher R2 is achieved by overfitting,
predictive ability can be reduced (Wetherill, 1986).

'Note that this is an incremental unit cost model rather than
a cumulative average cost model. Liao (1988) discusses the
differences between the two approaches and discusses why the
incremental model has become dominant in practice. One reason is
that the cumulative model weights early observations more heavily
and, in effect, "smooths" away period-to-period changes in average
cost.
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The most widely used rate adjustment model, which modifies the

traditional learning curve i•iodel with the addition of a production

rate term:

Ca = aQbRC (2)

where

CR Unit cost of item at quantity Q and production rate per
period R (i. e., with production rate as well as
learning considered).

Q Cumulative quantity produced.
R Production rate per period measure.
a Theoretical first unit cost.
b Learning curve exponent.
c Production rate exponent (which can be converted to a

production rate slope by slope = 2c).

A simulation approach was used to address the research

question. In brief, cost series were generated under varying

simulated conditions. The learning curve model and the rate

adjustment model were separately fit to the cost series to estimate

model parameters. The estimated models were then used to

separately predict future cost. The relative accuracy of the two

alternative future cost predictions was determined. Finally, an

analysis (ANOVA) was conducted relating relative prediction

accuracy (dependent variable) to the simulated conditions

(independent variables).

There are three main benefits gained from the simulation

approach. First, factors hypothesized to influence prediction

accuracy can be varied over a wider range of conditions than would

be encountered in any one (or many) sample(s) of actual cost data.

Second, explicit control is achieved over the manipulation of
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factors. Third, noise caused by factors not explicitly

investigated is removed. Hence simulation provides the most

efficient way of investigating data containing a wide variety of

combinations of the factor levels while controlling for the effects

of other factors not explicitly identified.

RESEARCH CHOICES

There were five choices that had to be made in conducting the

simulation experiment:

(1) The form of the rate adjustment (RA) model whose

performance was to be compared to the learning curve (LC) model.

(2) The functional form of the cost model used to generate the

simulated cost data.

(3) The conditions to be varied across simulation treatments.

(4) The cost objective (what cost was to be predicted).

(5) The measure of prediction performance.

Items (1), (2), (4) and (5) deal with methodological issues. Item

(3) deals with the various conditions simulated. The discussion of

item (3) encompasses the major variables examined in the study and

hence the major issues addressed. Each item will be discussed in

turn.

1. The Rate Adiustment Model. Various models, both

theoretical and empirical, have been suggested for incorporating

production rate into the learning curve (Balut 1981; Balut,

Gulledge, and Womer, 1989; Linder and Wilbourn, 1973; Smith, 1980,

1981; Washburn, 1972; Womer, 1979). The models vary with respect

to tradeoffs made between theoretical completeness and empirical
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tractability. Equation 2, described above, was the specific rate

adjustment model analyzed in this study, for several reasons:

First, it is the most widely used rate adjustment model in the

published literature. Second, it is commonly used today in the

practice of cost analysis (e.g., Dorsett, J.990). Third, in

addition to cost and quantity data (needed to estimate any LC

model), equation 2 requires only production rate data. Thus

equation 2 is particularly appropriate for examining the

incremental benefit of attention to production rate. (Other RA

models offered in the literature require knowledge of still

additional variables).5 In short, equation 2 is the most widely

applicable and most generally used rate adjustment .nodel.

2. The Cost Generating Function: A "true" cost function

for an actual item depends on the item, the firm, the time period

and all the varying circumstances surrounding actual production.

It is likely that most manufacturers do not "know" the true cost

function underlying goods they manufacture. Thus the choice of a

cost function to generate simulated cost data is necessarily ad

hoc. The objective here was to choose a "generic" cost function

which had face validity, which included components (parameters and

variables) that were generalizable to all production situations,

and which resulted in a unit cost that depended on both learning

5The equation 2 model is particularly applicable in situations
where a cost analyst or estimator does not have ready access to or
sufficient knowledge about the cost structure and cost drivers of
a manufacturer. Examples include the Department of Defense
procuring items from government contractors in the private sector,
or prime contractors placing orders with subcontractors.
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and production rate factors. The following explanation of the cost

function used reflects these concerns.

At the most basic level the cost of any unit is just the sum of

the variable cost directly incurred in creating the unit and the

share of fixed costs assigned to the unit, where the amount of

fixed costs assigned depend on the number of units produced.

UC = VC + FC (3)
PQ

where

UC = Unit cost.
VC = Variable cost per unit.
FC = Total fixed costs per period.
PQ = Production quantity per period.

The original concept of "learning" (Wright, 1936) involved the

reduction in variable cost per unit expected with increases in

cumulative quantity produced. (By definition, fixed costs are

assumed to be unaffected by volume or quantity.) To incorporate

the effect of learning, variable cost can be expressed as:

VC0  VCc1(Qd) (4)

where

Q Cumulative quantity.
VC0 = Variable cost of the Qth unit.
VC= Variable cost of the first unit.

d Parameter, the learning index.

Substituting into equation 3:

UCO = VC 1 (Qd) + FC (5)
PQ

Additionally, assume the existence of a "standard" ("benchmark,"

"normal," "planned") production quantity per period (PQ,) .
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Standard fixed cost per unit (SFC) at the standard production

quantity would be:

SFC = Fc (6)
PQ,

The production rate (PR) for any period can then be expressed

as a ratio of the production quantity to the standard quantity:

PR =PQ (7)
PQ6

The second term of equation (6) can then be rewritten as:

FC SFC (8)
PQ PR

and equation 5 rewritten as:

UC0  VC1 (Qd) + SFC (PR-') (9)

In this formulation it can be seen that total cost per unit is

the sum of variable cost per unit (adjusted for learning) plus

standard fixed cost per unit (adjusted for production rate). This

model incorporates the two factors presumed to impzct unit costs

that have been most extensively investigated: cumulative quantity

(Q) and production rate per period (PR).6 It is consistent with

both the theoretical and empirical literature which sees the

primary impact of learning to be on variable costs and the primary

6Smith (1980, 1981), for example, used a model similar to
equation 9 to explore the effect of different production rates on
unit cost. Balut (1981) and Balut, Gulledge and Womer (1989)
construct models based on learning and production quantity to
assist in "redistributing" overhead and "repricing" unit costs when
changes in production rate occur. The Balut and Balut, Gulledge
and Womer models differ in that they determine a learning rate for
total (not variable) unit cost and then apply an adjustment factor
to allow for the impact of varying production quantity on the
amount of fixed cost included in total cost.
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impact of production rate to be on the spreading of fixed costs

(Smith, 1980). Simulated cost data in this study was generated

using equation 9, while varying values for the variables and

parameters on the right hand side of the equation to reflect

differing conditions.

3. The Simulated Conditions: The general research hypotbcsis

is that the relative predictive accuracy of the LC and RA models

will depend on the circumstances in which they are used. What

conditions might be hypothesized to affect prediction accuracy?

Seven different factors (independent variables) were varied during

the simulation. In the following paragraphs, each factor is

discussed. A label for each is provided, along with a discussion

of why the factor may be relevant to prediction accuracy and how

the factor was operationalized in the simulation. Table 1

summarizes the seven factors.

i) Data History (DATAHIST): The number of data points

available to estimate parameters for a model should affect the

accuracy of a model. More data available during the "estimation

period" should be associated with greater accuracy for both the LC

and the RA model. 7 But increased data may not impact the accuracy

of the two models in the same manner. The RA model requires the

estimation of an additional parameter, and consequently is likely

to require more data points to avoid unreliable parameter estimates

and resultant prediction inaccuracy. Hence it may be hypothesized

7There are, of course, cost/benefit tradeoffs. The marginal
benefits of increased prediction accuracy for any model must be
weighed against the marginal costs of additional data collection.
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that the RA model will be more sensitive (less accurate) when data

is lean.

In the simulation, data history was varied from four to seven

to ten data points available for estimating model parameters. This

simulates having knowledge of costs and quantities for four, seven

or ten production lots. Four is the minimum number of observations

needed to estimate the parameters of the RA model by regression.

The simulation focuses on lean data availability both because the

effects of marginal changes in data availability should be most

pronounced when few observations are available and because many

real world applications (e.g., cost analysis of Department of

Defense weapon system procurement) occur under lean data

conditions.

ii) Variable Cost Learning Rate (LEARNRAT): In the cost

generating function, learning affects total unit cost by affecting

variable cost per unit. Past research (Smunt, 1986) has shown that

the improvement in prediction accuracy from including a learning

parameter in a model (when compared to its absence) depends on the

degree of learning that exists in the underlying phenomena being

modeled; the greater the degree of learning, the more benefit

gained from inclusion of a learning rate term. This suggests that

prediction accuracy may depend on the learning rate and hence that

relative prediction accuracy of the LC and RA models may also

depend on the learning rate. In the simulation, variable cost

learning rate (reflected in parameter d in equation 9) was varied

from 75% to 85% to 95%. Generally, complex products or labor

12



TABLE 1

INDEPENDANT VARIABLES

t LabelLevels

Data History DATAHISTI 4 7 10

Variable Cost Learning LEARNRAT 75% 85% 95%

Rate

Fixed Cost Burden BURDEN2  15% 33% 50%

Production Rate Trend PROTREND3  Level Growth

Production Rate
Instability/Variance RATEVAR' .05 .15 .25

Cost Noise/Variance COSTVAR5 .05 .15 .25

Future Production Level FUTUPROD 6  Low Same High

INumber of data points available during the model estimation
period; simulates the number of past production lots.

2Standard per unit fixed cost as a percentage of cumulative
average per unit total cost, during the model estimation period.

3A level trend means production at 100% of standard production
for each lot during the estimation period. A growth trend means
production rate gradually increasing to 100% of standard production
during the estimation period. The specific growth pattern depends
on the number of production lots in the estimation period, with
sequences as follows (expressed as a % of standard): For DATAHIST
= 4: 33%, 67%, 100%, 100%. For DATAHIST = 7: 20%, 40%, 60%, 80%,
100%, 100%, 100%. For DATAHIST = 10: 10%, 20%, 35%, 50%, 70%, 90%,
100%, 100%, 100%, 100%.

4Coefficient of variation of production rate. (Degree of
instability of production rate around the general production rate
trend.)

SCoefficient of variation of total per unit cost.
6 "Same" means production rate at 100% of standard for each

lot produced within the prediction zone. "Low" means production
rate at 50%. "High" means production rate at 150%.

M I . i i i i rii ]



total unit cost made up of fixed cost. 9 Three percentages were used

in the simulation: 15%, 33%, and 50%. The different percentages

can be viewed as simulating different degrees of operating

leverage, of capital intensiveness, or of plant automation. The

15% level reflects the average fraction of price represented by

fixed overhead in the aerospace industry, as estimated at one time

by DOD (Balut, 1981). ° The larger percentages are consistent with

the trend toward increased automation (McCullough and Balut, 1986).

iv) Production Rate Trend (PROTREND): When initiating a new

product, it is not uncommon for the production rate per period to

start low and trend upward to some "normal" level. This may be due

both to the need to develop demand for the output c- the desire to

start with a small production volume, allowing slack for working

ougs out of the production process. Alternatively, when a "new"

product results from a relatively small modification of an existing

product, sufficient customer demand or sufficient cor fidence in the

9Operationally this is a bit complex, since both per unit
variable and per unit fixed cost depend on other simulation inputs
(cumulative quantity and production rate per period). The process
of relating fixed cost to total cost was as follows: First, a
cumulative average per unit variable cost for all units produced
during the estimation period was determined. Then a standard fixed
cost per unit was set relative to the cumulative average per unit
variable cost. For example, if standard fixed cost per unit was
set equal to cumulative average variable cost per unit, then "on
average" fixed cost would comprise 50% of total unit cost during
the estimation period. Actual fixed cost per unit may differ from
standard fixed cost per unit if the production rate (discussed
later) was not at 100% of standard.

1lin the absence of firm-specific cost data, the Cost Analysis
Improvement Group in the Office of the Secretary of Defense treats
15% of the unit price of a defense system as representing fixed
cost (Pilling, 1990).
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production process may be assumed and full scale production may be

initiated rapidly. In short, two different patterns in production

volume may be exhibited early on when introducing a new item: a

gradual growing trend toward full scale production or a level trend

due to introduction at full scale production volume.

How might the production rate trend during the estimation

period affect the relative prediction accuracy of the LC and the RA

models? Two contrary arguments seem relevant. On the one hand,

the purpose of an RA model is to explain variance in cost due to

variance in production rate. If production rate is virtually level

during a model estimation period, there would be little period-to-

period differences in unit cost caused by the spreading of fixed

costs over varying outputs. Any rate effects would likely be

swamped by other random impacts on cost. This suggests greater

incremental benefit to using an RA model when the production rate

has not been level, i.e., when growth occurred during the model

estimation period. On the other hand, a growing production rate

from period to period results in statistical problems. Within the

RA model, there will be greater colinearity between cumulative

quantity (necessarily growing each period) and production rate.

Empirically, this colinearity has been observed by many cost

analysts (e. g., Gulledge and Womer, 1986). The colinearity makes

production rate a somewhat redundant variable and causes unreliable

parameter estimates. This suggests less incremental benefit to

using an RA model if production rate has been growing.

Which argument holds is an empirical question. The simulation

15
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created two production trends during the model estimation period:

"level" and "growth." These represented general trends (but, as

will become clear momentarily, variance around the general trend

was introduced). The level trend simulated a production rate set

at a "standard" 100% each period during model estimation. The

growth trend simulated production rate climbing gradually to 100%.

Details of the trends are in table 1.

v) Production Rate Instability/Variance (RATEVAR): Numerous

factors, in addition to the general trend in output discussed

above, may operate to cause period-to-period fluctuations in

production rate. Manufacturers typically do not have complete

control over either demand for output or supply of inputs.

Conditions in either market can cause instability in production

rate. (Of course, unstable demand, due to the uncertainties of

annual budget negotiations, is claimed to be a major cause of cost

growth during the acquisition of major weapon systems by the DoD).

The concern here is with the likely effect of rate instability on

the relative accuracy of LC and RA models. If production rate is

highly stable across periods, there would be little variance in

cost outcomes on which to estimate a rate parameter. Rate effects

would be dominated by other impacts on cost. This suggests greater

benefit to using an RA model when production rate is unstable over

time.

Production rate instability was simulated by adding random

variance to each period's production rate during the estimation

period. The amount of variance ranged from a coefficient of

16



variation of .05 to .15 to .25. For example, if the production

trend was level and the coefficient of variation was .05 then

"actual" production rates simulated were generated by a normal

distribution with mean equal to the standard production rate (100%)

and sigma equal to 5%.

vi) Cost Noise/Variance (COSTVAR): From period to period

there will be unsystematic, unanticipated, non-recurring, random

factors that will impact unit cost. Changes in the cost, type or

availability of input resources, temporary increases or decreases

in efficiency, and unplanned changes in the production process are

all possible causes. Conceptually such unsystematic factors can be

thought of as adding random noise to unit cost. While unsystematic

variation in cost cannot (by definition) be controlled, it is often

possible to characterize different production processes in terms of

the degree of unsystematic variation; some processes are simply

less well-understood, more uncertain, and less stable than others.

Does the relative predictive accuracy of LC and RA models

depend on the stability of the process underlying cost? To

investigate this question, random variance was added to the

simulated costs generated from the cost function. The amount of

variance ranged from a coefficient of variation of .05 to .15 to

.25. For example, when the coefficient of variation was .25, then

"actual" unit costs simulated were generated by a normal

distribution with mean equal to cost from equation 9 and sigma

equal to 25%.

vii) Future Production Level (FUTUPROD): Once a model is
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constructed (from data available during the estimation period), it

is to be used to predict future cost. The production rate planned

for the future may vary from past levels. Further growth may be

planned. Cutbacks may be anticipated. Will the level of the

future production rate affect the relative predictive accuracy of

the LC and RA models? Is one model more accurate if cutbacks in

production are anticipated and another if growth is planned?

Conflicting scenarios can be argued. For example, on the one hand,

inclusion of a rate term might be expected to increase prediction

accuracy when production rate changes significantly (i. e., either

growth or decline in the future period). On the other hand, if

growth during the future prediction period merely continues a

growth trend established during the estimation period, then

production rate will once again tend to be correlated with

cumulative quantity, and the incremental benefit ýf an RA model

over an LC model may be less obvious.

In the simiu1ation, future production was set at three levels:

low (50% of standard), same (100% of standard) and high (150% of

standard). These simulate conditions of cutting back, maintaining

or increasing production relative to the level of production

existing at the end of the model estimation period.

_4. The Cost Objective: What is to be predicted? Up to this

point the stated purpose of the study has been to evaluate accuracy

when predicting future cost. But which future cost? Three

alternatives were examined.

i) Next period average unit cost: As the label suggests this
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is the average per unit cost of items in the production "lot"

manufactured in the first period following the estimation period.

Here the total cost of producing the output for the period is

simply divided by the output volume to arrive at unit cost.

Attention to this cost objective simulates the need to predict near

term unit cost.

ii) Total cost over a finite production horizon: The

objective here is to predict the total cost of all units produced

during a fixed length production horizon. Three periods were used

as the length of the production horizon (one production lot

produced each period). If the future production rate is low (high)

then relatively few (many) units will be produced during the finite

production horizon. Attention to this cost objective simulates the

need to predict costs over some specific planning period,

regardless of the volume to be produced during that planning

period.

iii) Total program cost: The objective here is to predictive

total cost for a specified number of units. If the future

production rate is low (high) then relatively more (fewer) periods

will be required to manufacture the desired output. The simulation

was constructed such that at a low (same, high) level of future

production six (three, two) future periods were required to produce

the output. Attention to this cost objective simulates the need to

predict total cost for a particular production program, regardless

of the number of future periods necessary to complete the program.

Examining each of these three cost objectives was deemed

19
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necessary to provide a well-rounded investigation of predictive

accuracy. However, the findings were substantially the same across

the three cost objectives. In the interests of space, the

remainder of this paper will discuss the analysis and results only

for the first cost objective, the average cost per unit for the

next period's output.

5. The Measures of Prediction Performance: In order to

compare prediction accuracy between LC and RA models, two kinds of

measures were required. First, a model prediction error (ERR) was

determined separately for each (LC or RA) model as follows:

ERR = IPUC - AUCI + AUC

where

PUC = Predicted unit cost from either the learning curve
or the rate adjustment model.

AUC = Actual unit cost as generated by the cost
function.

This is a commonly used error measure, the absolute percentage

error.

Next a simple difference in errors (ERRDIFF) between the LC

prediction and the RA prediction was calculated.

ERRDIFF = ERRLC - ERRdA

where

ERRLC Absolute percentage error using the learning curve
model prediction of cost.

ERRRA Absolute percentage error using the rate
adjustment model prediction of cost.

Positive values for ERRDIFF mean that the rate adjustment model

produced smaller prediction errors that the learning curve model
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and consequently imply increased accuracy from incorporating a

production rate variable into the prediction process. Negative

values mean the learning curve model is more accurate. ERRDIFF

represents the dependent variable in the statistical analysis. The

research question then becomes: What factors or conditions explain

variance in ERRDIFF?

Figure 1 summarizes the complete simulation process leading up

to the determination of ERRDIFF. The simulation was run once for

each possible combination of treatments. Given seven factors

varied and three possible values for each factor (except for

PROTREND which had two), there were 3 x 3 x 3 x 3 x 3 x 3 x 2 =

1458 combinations. Thus the simulation generated 1458 observations

and 1458 values for ERRDIFF. 1 1

ANALYSIS AND FTNDINGS

The simulation results were evaluated using analysis of

variance (ANOVA) to conduct tests of statistical significance. All

main effects are discussed in the following section. First order

(pairwise) interactions were also tested. Those significant at .01

"1In the simulation, just as in the real practice of cost
analysis, it is possible for a model estimated on limited data to
be very inaccurate, leading to extreme values for ERR (or ERRDIFF).
If such outlier values were to be used in the subsequent analysis,
findings would be driven by the outliers. Screening of the
observations for outliers was necessary. During the simulation, if
a model produced an ERR value in excess of 100%, then that value
was replaced with 100%. This truncation has the effect of reducing
the impact of an outlier on the analysis while still retaining the
observation as one that exhibited poor accuracy. Alternative
approaches to the outlier problem included deletion instead of
truncation and use of a 50% ERR cutoff rather than the 100% cutoff.
Findings were not sensitive to these alternatives.

21



FIGURE I
SIMULTXION FLOWCHART

Determine levels for
Independent
Variables.

Develop "historical"
lot quantity and
lot production rate
data series.

Input lot quantity
and rate data into
functional cost model
to generate
"historical" unit cost
data series.

Fit learning curve model Fit rate adjustment
(C = aQh) to historical model (C = aQbR') to
cost series. Estimate historical cost series.
model parameters. Estimate model

parameters.

Use learnirig curve Compute actual Use rate adjustment
model to predict future future cost series model to predict future
cost series, from the functional cost series.

model.

Calculate learning curve1 Calculate rate
model prediction error. adjustment model

prediction error.

Calculate difference
in prediction
accuracy.

Repeat for new levels
of independent
variables.



are also discussed. Table 2 provides the ANOVA results.

Main Effects: As indicated in table 2, all main effects,

except LEARNRAT, are significant at .0005, indicating that values

for ERRDIFF are significantly influenced by the treatment

conditions. Table 3 summarizes ERRDIFF values under the various

experimental conditions.

The major findings are perhaps made most obvious by a plot of

ERRDIFF by treatments. Figure 2 shows a sample plot of ERRDIFF

against DATAHIST. Two points are of interest. First, the relative

accuracy of the LC and RA models clearly does depend on the number

of observations available for model estimation. Second, both

negative and positive value for ERRDIFF are present. This implies

that under some conditions (few observations) the LC model is more

accurate than the RA model. But under different conditions (larger

number of observations) the RA model is more accurate. The

crossover point occurs at about seven observations.

Figure 3 shows a similar plot of ERRDIFF with all (significant)

variables superimposed. In this plot, 1, 2, and 3 on the x-axis

reflect low, medium, and high values for the independent variables

(which are taken from the left, middle and right columns of Table

3). Figure 3 makes several points. First for each the six

variables plotted, ERRDIFF varies significantly depending on the

value (treatment) for the independent variable. This simply

implies that the experimental conditions do reflect factors

relevant to model accuracy.

Second for all six independent variables, at some point over
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TABLE 2

ANALYSIS OF VARIANCE RESULTS

SOURCE DZ SUM OF SOUARES MEAN SQAREV
Model 85 33.10921 .3895 9.03
Error 1372 59.18006 .0431 PR>F:
Corrected Total 1457 92.28927 .0001

H2 9-y ERRDIFF MEAN
.3588 1236.81 -. 0168

SOURCE 2F ANOVA SS F VALUE PR>F

DATAHIST 2 3.6780 42.63 .0001
LEARNRAT 2 .0510 .59 .5536
BURDEN 2 .7383 8.56 .0002
PROTREND 1 1.6259 37.70 .0001
RATEVAR 2 5.4728 63.44 .0001
COSTVAR 2 9.3918 108.87 .0001
FUTUPROD 2 .6662 7.72 .0005
DATAHIST*LEARNRAT 4 .0699 .41 .8050
DATAHIST*BURDEN 4 .1772 1.03 .3920
DATAHIST*PROTREND 2 .3217 3.73 .0243
DATAHIST*RATEVAR 4 .09844 .49 .7436
DATAHIST*COSTVAR 4 .9813 5.69 .0002
DATAHIST*FUTUPROD 4 .7531 4.37 .0016
LEARNRAT*BURDEN 4 .2444 1.42 .2260
LEARNRAT*PROTRZND 2 .0092 .11 .8979
LEARNRAT*RATEVAR 4 .3933 2.28 .0588
LEARNRAT*COSTVAR 4 .2407 1.40 .2332
LEARNRAT*FUTUPROD 4 .3818 2.21 .0655
BURDEN*PROTREND 2 .0806 .93 .3931
BURDEN*RATEVAR 4 .2325 1.35 .2501
BURDEN*COSTVAR 4 .7304 4.23 .0021
BURDEN*FUTUPROD 4 1.0539 6.11 .0001
PROTREND*RATEVAR 2 2.1867 25.35 .0001
PROTREND*COSTVAR 2 .1022 1.19 .3059
PROTREND*FUTUPROD 2 .4751 5.51 .0041
RATEVAR*COSTVAR 4 .3163 1.83 .1199
RATEVAR*FUTUPROD 4 1.7734 10.28 .0001
COSTVAR*FUTUPROD 4 .8760 5.08 .0005



TABLE 3

PREDICTION ERROR DIFFERENCE BETWEEN
LEARNING CURVE AND RATE ADJUSTMENT MODELS:

MAIN EFFECTS

Independent Variable ERRDIFF for Each Level

DATAHIST Value: 4 7 10

ERRDIFF Mean: -. 87 .007 .030

LEARNRAT Value: 75% 85% 95%

ERRDIFF Mean: -. 009 -. 019 -. 023

BURDEN Value: 15% 33% 50%

ERRDIFF Mean: -. 047 -. 009 .006

PROTREND Value: level - growth

ERRDIFF Mean: -. 050 .017

RATEVAR Value: .05 .15 .25

ERRDIFF Mean: -. 095 -. 010 .054

COSTVAR Value: .05 .15 .25

ERRDIFF Mean: .082 -. 019 -. 114

FUTUPROD Value low same high

ERRDIFF Mean: .003 -. 007 -. 046



FIGURE 2

PLOT OF PREDICTION ERROR DIFFERENCE
BY DATA HISTORY
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FIGURE 3

PLOT OF PREDICTION ERROR DIFFERENCE
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the range of these variables, both positive and negative values for

ERRDIFF exist. This means that neither the LC model nor the RA

model dominates. Each model is more accurate under some

experimental conditions.

Third, some factors apparently have a greater impact on

relative prediction accuracy than others. For example, the plot

shows that both the most extreme values for ERRDIFF (highest

positive and lowest negative) are associated with different

treatments on COSTVAR. The F-value for COSTVAR is also the highest

and most significant in the ANOVA. This suggests that the greatest

impact on relative predictive accuracy is due to variation in the

amount of unsystematic noise impacting the measure of cost. A

relatively large effect is also apparent due to variation in

RATEVAR; while relatively small (but still significant) effects are

associated with variations in BURDEN and FUTUPROD. These

observations are interesting but must be interpreted with caution.

COSTVAR does have the greatest impact on ERRDIFF over the

particular range of treatments examined by the simulation. But if

the ranges over which the individual independent variables were

allowed to vary were altered, a different factor could appear to be

most important.

Fourth, values fcr ERRDIFF are either monotonically increasing

or decreasing for the various independent variable treatments.

Hence some general conclusions about the impact of the experimental

conditions on relative prediction errors are possible:

a) Data History: As indicated above the RA model outperforms
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the LC model when the number of observations for model estimation

is relatively greater. This is expected; the benefit from greater

precision due to the additional term in the RA model can only be

realized when the data are sufficient to produce reliable parameter

estimates.

b) Fixed Cost Burden: As expected the RA model tends to

outperform the LC model as the proportion of total unit cost

comprised of fixed cost increases. This implies that the benefit

derived from use of a rate adjustment model depends on the capital

intensiveness of the production process. Surprising, perhaps, was

the fact that the change in ERRDIFF from the low (15%) fixed cost

treatment to the high (50%) was relatively small.

c) Past Production Trend: The RA model tends to outperform

the LC model if the production rate was growing during the model

estimation period. This finding suggests that it iu necessary to

have a changing production rate from period-to-period in order for

the model estimation process to reliably capture the effect of rate

on cost. It also suggests that relatively higher correlation

between cumulative quantity and production rate (which will occur

when rate has been growing) does not imply that cumulative quantity

will be a sufficient variable. Cumulative quantity does not

adequately capture the impact of rate changes.

d) Production Rate Instability: The RA model tends to

outperform the LC model when there is greater instability in

production rate. This suggests that it is desirable to have large

period-to-period variation in production rate during the time of
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model estimation. In retrospect this conclusion seems obvious. If

the variance in cost caused by rate changes is small, because the

rate changes themselves are small, then the effect will be swamped

by other effects and model parameters will be unreliable.

e) Cost Noise/Variance: As the random noise in unit cost

increases, the RA model will perform more poorly relative to the LC

model. This suggests that when there are unsystematic,

unpredictable factors that influence cost, use of the RA model is

less beneficial. The noise leads to unreliable estimates of the

production rate effect and poorer cost predictions.

f) Future Production Level: The degree to which the RA model

outperforms the LC model appears to be inversely associated with

the production rate in the prediction period. When cutbacks in

production are anticipated, cost is more accurately predicted by

the RA model. When growth is anticipated, cost is more accurately

predicted by the LC model. This suggests that the RA model is most

beneficial when a reversing of the production trend from the

estimation period to the prediction period is expected.

Interaction Effects: Eight first order interactions were also

found to be significant in the ANOVA. Note that five of these

interactions involve FUTUPROD as one of the interacting variables.

This means that the impact of other variables on relative

prediction accuracy is particularly sensitive to the anticipated

level of production in the prediction period. Examining these

eight interactions individually leads to further insight concerning

the conditions that impact relative prediction accuracy. They are
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illustrated in Figures 4 through 11.

Figure 4, the interaction of Data History with Future

Production Level, demonstrates again that the RA model tends to

outperform the LC model as the data history becomes richer. But

this effect is most pronounced when a low future production level

is planned. If a cutback in production is projected and few

observations are available for model estimation, the LC model is

substantially more accurate than the RA model (the most negative

value for ERRDIFF occurs under these conditions). If a cutback in

production is projected and relatively many observations are

available for model estimation, the RA model is substantially more

accurate than the LC model. (The most positive vall\.e for ERRDIFF

occurs under these conditions.)

Figure 5, the interaction of Fixed Cost Burden and Future

Production Level, demonstrates a somewhat analogous effect. The RA

model tends toward better accuracy than the LC model as fixed cost

burden increases. But again this effect is most pronounced when

low levels of production in the future are planned. The analyst's

concern for the impact of burden percentage on model accuracy

should be greatest when volume cutbacks are expected.

Figure 6, the interaction of Production Rate Instability and

Future Production Level also shows the importance of the future

production level. The RA model tends to outperform the LC model as

the degree of variability in the production rate increases. But

the impact of rate variability is most pronounced when a cutback in

production volume is planned. If the production rate was stable

26



FIGURE 4

INTERACTION OF DATA HISTORY
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FIGURE 5

INTERACTION OF FIXED COST BURDEN
WITH FUTURE PRODUCTION LEVEL
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FIGURE 6

INTERACTION OF PRODUCTION RATE INSTABILITY
WITH FUTURE PRODUCTION LEVEL
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FIGURE 7

INTERACTION OF COST NOISE
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during the model estimation period, the LC model is more accurate.

If the production rate was fluctuating and a cutback in volume is

planned, then the RA model substantially outperforms the LC model.

Figure 7, the interaction of Cost Noise with Future Production

Level, again illustrates how the future production volume impacto

relative prediction accuracy. For all treatments, as unsystematic

factors make cost more noisy, the RA model tends to lose its

relative advantage over the simpler LC model. But this

deterioration in predictive accuracy due to noise for the RA model

is more evident when a cutback in future production volume is

anticipated.

Figure 8 shows the interaction of the Production Trend during

the estimation period and the Future Production Level during the

prediction period. Again the steepest curve occurs when the future

production level is low. This plot demonstrates that if production

rate is relatively level during the model estimation period, the

simple LC model tends to outperform the RA model. But the RA model

outperforms the LC model when there is a shift or change in

direction of the production trend from the estimation period to the

prediction period. This follows from the positive value for

ERRDIFF when a growing past production trend is coupled with a

decline in future production level.

Figure 9 shows an interesting interaction between Cost Noise

and Fixed Cost Burden. The plot shows that under all conditions,

increasing cost noise reduces, and then eliminates, any benefit

from using the RA model. But the deterioration is most dramatic if
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the percentage of fixed cost in total cost is high. If burden is

high and cost is not subject to unsystematic noise, then the RA

model is substantially superior. But if burden is high and cost

is subject to unsystematic noise, the RA model is substantially

inferior.

Figure 10, the interaction between Cost Noise and Data History,

illustrates a somewhat additive effect of two factors. Either

increasing cost noise or reducing the number of observations causes

deteriozation in the performance of the RA model relative to the LC

model. But combining the two effects magnifies the deterioration.

If there is high cost noise and few observations on which to

estimate model parameters, the RA model becomes verl % inreliable and

the LC model is strongly superior.

Finally, Figure 11 shows the interaction between Production

Rate Instability and Production Rate Trend. These variables

reflect two aspects of production rate during the model estimation

period. The plot illustrates that when there is little trend in

rate, coupled with little variability in rate relative to trend,

then there is little basis on which to estimate a rate parameter.

Hence the LC model strongly outperforms the RA model.

SUMMARY AND-CONCLUSIONS

The central research question addressed in the study was:

under what conditions does consideration of production rate and

incorporation of a rate variable into a learning curve analysis of

cost lead to a more accurate prediction of future cost? The
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FIGURE 8

INTERACTION OF PRODUCTION RATE TREND
WITH FUTURE PRODUCTION LEVEL
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FIGURE 9

INTERACTION OF COST NOISE
WITH FIXED COST BURDEN
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FIGURE 10

INTERACTION OF COST NOISE
WITH DATA HISTORY
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FIGURE 11

INTERACTION OF PRODUCTION RATE INSTABILITY
WITH PRODUCTION RATE TREND
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analysis simulated prediction for both a traditional learning curve

and a rate adjustment model and compared prediction accuracy under

various conditions. One central finding was that neither a

traditional learning curve analysis nor an analysis which considers

the impact of production rate on cost is inherently supcrior.

Neither models dominates; both outperform the other under some

conditions.

General tendencies were evident. Considering production rate

in the analysis lead to reduction in prediction error and improved

accuracy when

-- The number of observations available for the analysis
was relatively rich.

-- The amount of fixed cost in total cost was relatively
high.

-- The production rate trend had been growing during the
model estimation period.

-- The period-to-period variability in production rate was
relatively large.

-- Random noise in cost due to unsystematic factors
impacting cost was relatively low.

-- Production volume was expected to be cutback in the
future periods for which cost predictions were being
made.

Each of these findings suggests that researchers or cost analysts,

engaged in a cost prediction or cost analysis problem, may benefit

from attending to such factors when deciding on the form of model

or analysis they might bring to bear.

Numerous interacting impacts of combinations of factors on

prediction accuracy were also evident, but a broad "theme" was

apparent in the interactions, suggesting a general conclusion:
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-- The greatest impact (of changes in the various factors)
on relative prediction accuracy (of the learning curve
approach and the rate adjustment approach) occurs when
cutbacks in future production are anticipated.

This means that researchers and cost analysts, attempting to

predict future cost in an environment where future production

volume is declining, will find the choice of an approach to be most

critical. The relative accuracy of the learning curve approach or

the rate adjustment approach is particularly sensitive to changes

in data richness, fixed cost burden, production rate trend and

stability, and cost noise when cutbacks are anticipated.

Other interactions collectively suggest a second general

conclusion:

-- The impacts of factors on the relative prediction
accuracy of the two approaches tend to be additive.

This means that if the presence of one factor (say, lean data

history) and the presence of another (say, high cost noise) both

reduce the relative accuracy of the rate adjustment approach, then

the presence of both will magnify the effect.

The conclusions of any study must be tempered by any

limitations. The most prominent limitation of this study is the

use of simulated data. Use of the simulation methodology was

justified by the need to create a wide range of treatments and

maintain control over extraneous influences. This limitation

suggests some directions for future research.

-- lRe-analyze the research question while altering anpects
of the simulation methodology. For example, are
findings sensitive to the cost function assumed?

-- Address the same research question using actual cost
and production rate data. Are the same findings
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evident when using "real-world" data?

Providing confirmation of the findings by tests using alternative

approaches would be beneficial.

Additional future research may be directed toward new, but

related, research questions.

Investigate other qualities of predictive performance,
for example, bias. Do learning curves or rate
adjustment models systematically provide predictions
that are biased toward under or over estimation of
future cost? Under what conditions?

Investigate the magnitude of prediction errors using
either a learning curve or rate adjustment approach.
How large are average prediction errors under varying
circumstances?

Investigate other competing models or approaches to
cost prediction. Perhaps accuracy can be improved by
using some version of a "moving average" prediction
model. Can such a model outperform both the learning
curve and the rate adjustment approach? If so, under
what circumstances?
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